S5: Electrochemical Carbons – 2 #### P3-1 # EFFECT OF LOW TEMPERATURE PRE-HEAT TREATMENT ON THE ELECTROCHEMICAL ANODIC PERFORMANCES OF BIOMASS-DERIVED HARD CARBONS IN SODIUM ION BATTERIES Koji Nakabayashi^{1,2}, Yujin Han¹, Jin Miyawaki^{1,2}, Seong-Ho Yoon^{1,2} ¹Interdisciplinary Graduate School of Engineering Sciences, Kyushu University, Kasuga, Fukuoka 816-8580, Japan ²Institute for Materials Chemistry and Engineering, Kyushu University, Kasuga, Fukuoka 816-8580, Japan #### P3-2 # RATIONAL DESIGN OF 2D MATERIALS@GRAPHENE NANOCABLES: TOWARDS HIGH PERFORMANCE ELECTRODE MATERIALS FOR LITHIUM ION BATTERIES Debin Kong^{1,2,3}, Haiyong He², Qi Song², Bin Wang², Wei Lv^{1,3}, Quan-Hong Yang^{1,3} and Linjie Zhi^{1,2,3} ¹School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China ²National Center for Nanoscience and Technology, No. 11 Beiyitiao, Zhongguancun, Beijing 100190, China ³The Synergistic Innovation Center of Chemistry and Chemical Engineering of Tianjin, Tianjin 300072, China. #### P3-3 # HIGHLY CONDUCTIVE AND POROUS CARBON AEROGELS FROM NANOCELLULOSE AS SUSTAINABLE ELECTRODES FOR SUPERCAPACITORS Volodymyr Kuzmenko^{1,2}, Mazharul Haque¹, Athanasios Mantas³, Per Lundgren¹, Paul Gatenholm^{2,3} and Peter Enoksson^{1,2} ¹Department of Microtechnology and Nanoscience, ²Wallenberg Wood Science Center, and ³Department of Chemistry and Chemical Engineering Chalmers University of Technology, Gothenburg, SE-41296, Sweden. ### P3-4 # CARBON NANOFIBERS-SUPPORTED B₂O₃-SnO_x GLASSES AS ANODE MATERIALS FOR HIGH-PERFORMANCE LITHIUM-ION BATTERIES Jin-Le Lan, Yunhua Yu, Xiaoping Yang State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China. #### P3-5 ### FORMATION REACTIONS AT THE SOLID-ELECTROLYTE INTERFACE OF GRAPHITE ANODES FROM REACTIVE MOLECULAR DYNAMICS Sahithya Reddivari and Christian Lastoskie Department of Civil and Environmental Engineering, University of Michigan, 1351 Beal Avenue, Ann Arbor, MI 48109-2125, USA. #### P3-6 ### MONOLITHIC TRACK ETCHED CARBON THIN FILMS FOR SUPERCAPACITORS Zoran Laušević¹, Dragana Žugić¹, Petar Laušević^{1,2}, Yuri Kochnev³ and Pavel Apel³ ¹Laboratory of physical chemistry, Vinca institute of nuclear sciences, University of Belgrade, Serbia ²School of Electrical Enginering, University of Belgrade, Serbia ³Flerov laboratory of nuclear reactions, Joint institute for nuclear research, Dubna, Russia. ### P3-7 # IMPEDANCE STUDY AND MODELING OF KAPTON-DERIVED THIN FILM SUPERCAPACITORS Petar Laušević^{1,2}, Vladimir Nikolić², Milica Marčeta Kaninski², Zoran Laušević² and Predrag Pejović¹ ¹School of Electrical Enginering, University of Belgrade, Serbia ²Laboratory of physical chemistry, Vinca institute of nuclear sciences, University of Belgrade, Serbia. #### P3-8 ## NITROGEN-DOPED CARBON MATERIALS AS ELECTROCATALYSTS FOR THE OXYGEN REDUCTION REACTION M.J. Nieto-Monge¹, G. Lemes¹, A. Borrero¹, C. Alegre², R. Moliner¹, M.V. Martínez- Huerta³, M.C. Goya⁴, E. Pastor⁴ and M.J. Lázaro¹ ¹Instituto de Carboquímica, c/ Miguel Luesma Castán nº 4, 50018 Zaragoza, Spain ²Istituto Di Tecnologie Avanzate Per L'energia, Salita Santa Lucia Sopra Contesse nº 5, 98126, Messina, Italy ³Instituto de Catálisis y Petroleoquímica, C/ Marie Curie nº 2, 28049 Madrid, Spain ⁴Instituto de Materiales y Nanotecnología. Universidad de La Laguna. Avda. Astrofísico, Francisco Sánchez s/n. 38071 La Laguna, Tenerife, Spain. #### P3-9 # ELECTRICAL CONDUCTIVITY OF NANOSTRUCTURED CARBON MATERIALS: INFLUENCE OF THE PHYSICOCHEMICAL PROPERTIES S. Pérez-Rodríguez, R. Moliner, M.J. Lázaro Instituto de Carboquímica (CSIC), Miguel Luesma Castán 4, 50018 Zaragoza, Spain. ### P3-10 # PREPARATION AND CHARACTERIZATION OF CARBON COMPOSITE HYBRID CATALYSTS FOR FUEL CELLS Seon Ho Lee 1,2 , Gu-gon Park 2 , Dong-Hyun Peck 2,3 , Sang-kyung Kim 2,3 , Byung-rok Lee 2 , Yong Gun Shul 1 and Doo-Hwan Jung 2,3 ¹Department of Chemical and Biomolecular Engineering, College of Engineering, Yonsei University, Seoul 120-749, Republic of Korea ²Fuel Cell Research Center, Korea Institute of Energy Research (KIER), Daejeon 305-343, Republic of Korea ³Department of Advanced Energy Technology, University of Science and Technology (UST), 305-343 Daejon, Republic of Korea. #### P3-11 # PREPARATION OF MICROPOROUS CARBON NANOFIBER FABRICS *VIA* ONE-STEP POLYMERIZATION ELECTROSPINNING AS FREE-STANDING ELECTRODES FOR HIGH PERFORMANCE SUPERCAPACITORS Cheng Ma, Jitong Wang, Wenming Qiao, Donghui Long, Licheng Ling State Key Laboratory of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China. #### P3-12 # EFFECT OF HYDROGEN AND OTHER SURFACE CHEMISTRY TREATMENTS ON CARBON-BASED MATERIALS Taron Makaryan, Xiuqiang Xie, Katherine L. Van Aken, Yury Gogotsi Department of Materials Science and Engineering, and A. J. Drexel Nanomaterials Institute, Drexel University, Philadelphia, PA 19104, USA. #### P3-13 # HIGH PERFOMANCE ASYMMETRIC SUPERCAPACITOR BASED ON M_0S_2/GF AND ACTIVATED CARBON Tshifhiwa M. Masikhwa, Julien K. Dangbegnon, Abdulhakeem Bello, Moshawe J. Madito, Damilola Momodu and Ncholu Manyala Department of Physics, Institute of Applied Materials, University of Pretoria, Pretoria 0028, South Africa. ### P3-14 # PREPARATION AND CHARACTERIZATION OF THREE-DIMENSIONAL NANOPOROUS CARBON FROM EXPANDED GRAPHITE FOR HIGH ENERGY DENSITY SUPERCAPACITOR IN ### **AQUEOUS ELECTROLYTE** N. Manyala, F. Barzegar, A. Bello, D. Y. Momodu, M. J. Madito and J. K.Dangbegnon Department of Physics, Institute of Applied Materials, University of Pretoria, Pretoria 0028, South Africa. #### P3-15 ### SYNTHESIS OF HIGH SURFACE AREA GRAPHENE AEROGELS FOR LITHIUM ION SUPERCAPACITOR CATHODES Qiang Fan¹, Meng Yang¹, Qinghan Meng¹, Bing Cao¹, Yunhua Yu² ¹College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China ²State Key Laboratory of Organic-inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China. #### P3-16 ### CARBON XEROGELS AS ACTIVE MATERIAL IN ELECTROCHEMICAL DEVICES Miguel A. Montes-Morán¹, Natalia Rey-Raap¹, Esther G. Calvo¹, Alexandre F. Léonard², Marie-Laure C. Piedboeuf², Nathalie Job², J. Angel Menéndez¹, Ana Arenillas¹ ¹Instituto Nacional del Carbón, CSIC, Apdo 73, 33080 Oviedo, Spain ²Department of Chemical Engineering – Nanomaterials, Catalysis, Electrochemistry, Institute of Chemistry (B6a), University of Liège, B-4000 Liège, Belgium. ### P3-17 # A STUDY OF QUASI-METALLIC LITHIUM/SODIUM CLUSTER IN NEGATIVE ELECTRODE MATERIALS FOR SECONDARY BATTERY USING SOLID STATE NMR AND DFT CALCULATION Ryohei Morita¹, Kazuma Gotoh^{1,2}, Mika Fukunishi³, Mouad Dahbi^{2,3}, Kei Kubota^{2,3}, Shinichi Komaba^{2,3}, Naoto Nishimura⁴, Takashi Yumura⁴, Kenzo Deguchi⁵, Shinobu Ohki⁵, Tadashi Shimizu⁵, and Hiroyuki Ishida¹ *Graduate School of Natural Science & Technology, Okayama University, 3-1-1 Tsushima-naka, Okayama 700-8530, Japan* ²Elements Strategy Initiative for Catalysts and Batteries (ESICB), Kyoto University, Nishikyo-ku, Kyoto 615-8245, Japan ³Department of Applied Chemistry, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku, Tokyo 162-8601, Japan ⁴Department of Chemistry and Materials Technology, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto 606-8585, Japan ⁵National Institute for Materials Science, Tsukuba, Ibaraki 305-0003, Japan. #### P3-18 # IMPROVEMENT OF THE ELECTROCHEMICAL PERFORMANCE OF A SUPERPOROUS ACTIVATED CARBON BY N-FUNCTIONALIZATION AT MILD CONDITIONS María José Mostazo-López¹, Ramiro Ruiz-Rosa¹, Emilia Morallón², Diego Cazorla-Amorós¹ Departamento de Química Inorgánica and ²Departamento de Química Física, Instituto Universitario de Materiales, Universidad de Alicante, Apartado 99, 03080-Alicante, Spain. #### P3-19 # DEVELOPMENT OF HIGH PERFORMANCE NANOCARBON COMPOSITES BY USING AGRICULTURAL PRODUCTS Kyoichi Oshida¹, Kozo Osawa¹, Tomoyuki Itaya¹, Masahiko Murata¹, Takunori Minamizawa¹, Takayuki Fujisawa¹, Takuya Murakami¹, Shyota Nakajyo¹, Kenji Takeuchi², Masatsugu Fujishige², Morinobu Endo², Toshimitsu Hata³, and Yoshiyuki Suda⁴ ¹National Institute of Technology, Nagano College, 716 Tokuma, Nagano, 381-8550 Japan ²Institute of Carbon Science and Technology, Shinshu University, 4-17-1 Wakasato, Nagano, 380-8553 Japan ³Research Institute for Sustainable Humanosphere, Kyouto University, Gokasho, Uji, Kyoto, 611-0011 Japan ⁴Toyohashi University of Technology, 1-1 Hibarigaoka, Tempaku-cho, Toyohashi, Aichi, 441-8580 Japan. # ELECTROCHEMICAL CAPACITOR BASED ON MULTILAYERED FILMS OF POLYANILINE AND REDUCED GRAPHENE OXIDE Leonardo Paterno¹, Cleiton L. Carvalho¹, Maria José A. Sales¹, and Artemis M. Ceschin² ¹Universidade de Brasília, Instituto de Química, Brasília-DF 70904-970, Brazil ### P3-21 # CONDUCTIVITY VERSUS ACTIVE SITES IN METAL-FREE OXYGEN REDUCTION REACTION ELECTROCATALYSIS Mo Qiao¹, Cheng Tang^{1, 2}, Guanjie He³, Kaipei Qiu³, Russell Binions^{1, 4}, Ivan Parkin³, Qiang Zhang^{1, 2} Zhengxiao Guo³ and Maria-Magdalena Titirici^{1, 4} ¹School of Engineering and Materials Science, Queen Mary University of London, London E1 4NS, UK ²Beijing Key Laboratory of Green Chemical Reaction Engineering, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China ³Materials Chemistry Centre, Department of Chemistry, University College London, London WC1H 0AJ, UK ⁴Materials Research Institute, Queen Mary University of London, London E1 4NS, UK. ### P3-22 ### MODELING ELECTRICAL DOUBLE LAYER AND PSEUDOCAPACITIVE PERFORMANCE OF CARBON ELECTRODES Ramakrishnan Rajagopalan^{1,2}, Danhao Ma³, Chih-Chuan Chou⁴ and Clive Randall^{2,4} ¹Department of Engineering, Penn State DuBois, DuBois, PA 15801, USA ³Energy Engineering, The Pennsylvania State University, University Park, PA 16802, USA #### P3-23 # EVIDENCES OF THE ELECTROACTIVITY OF SURFACE PHOSPHORUS GROUPS ON CARBON MATERIALS Ramiro Ruiz-Rosas¹, Raúl Berenguer², José Rodríguez-Mirasol³, Tomás Cordero³, Emilia Morallón², and Diego Cazorla-Amorós¹ ¹Instituto Universitario de Materiales, Departamento de Química Inorgánica, Universidad de Alicante, Apartado 99, 03080-Alicante, Spain ²Înstituto Universitario de Materiales, Departamento de Química Física, Universidad de Alicante, Apartado 99, 03080-Alicante, Spain #### P3-24 ### EFFECT OF INTERNAL NANOSTRUCTURE ON THE PERFORMANCE OF FRACTAL-LIKE CARBON NANOPARTICLES FOR HIGH RATE LITHIUM ION BATTERY ANODE MATERIAL Anton D. Sediako¹, Sanam Atashin², Mohammad Reza Kholghy¹, Amr Helmy¹, John Wen², Murray J. Thomson¹ ¹University of Toronto, Toronto, Ontario Canada #### P3-25 # BIOMASS-DERIVED ELECTRODE MATERIAL FOR CAPACITIVE DEIONIZATION OF BRACKISH WATER Arupananda Sengupta 1,2 , Ramakrishnan Rajagopalan 3,5 , Khanjan Mehta 4 , Kofi Adu 6 and Randy L. Vander Wal 1,2 ¹John and Willie Leone Family Department of Energy and Mineral Engineering ²The EMS Energy Institute ²Universidade de Brasília, Depto. Engenharia Elétrica, Brasília-DF 70910-900, Brazil. ²Materials Research Institute, The Pennsylvania State University, University park, PA 16802, USA ⁴Materials Science and Engineering, The Pennsylvania State University, University Park, PA 16802, USA. ³Universidad de Málaga, Andalucía Tech, Departamento de Ingeniería Química, 29071 Málaga, Spain. ²University of Waterloo, Waterloo, Ontario, Canada. ³Material Research Institute ⁴School of Engineering Design, Technology, and Professional Programs, The Pennsylvania State University, University Park, PA 16802, USA ⁵Department of Engineering, The Pennsylvania State University, Dubois, PA 15801, USA ⁶Department of Physics, Penn State Altoona, The Pennsylvania State University, Altoona, PA 16822, USA. #### S6: Fibers and Composites – 2 #### P3-26 #### ELECTRICAL AND THERMAL PROPERTIES OF A CARBON-BASED HEATER Sang Wan Kim¹, and Kap Seung Yang^{1,2}, Young Jun Lee³ ¹Department of Polymer Engineering, Graduate School, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju 500-757, Korea ²Alan G. MacDiarmid Energy Research Institute & School of Polymer Science and Engineering, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju 500-757, Korea ³HAE Research Laboratory, LG Electronics, Seoul, 153-802, Korea. ### P3-27 ### PREPARATION OF PITCH-BASED CARBON FIBER WITH THERMAL TREATMENT CONDITIONS Moo Sung Kim, Tae Hwan Lim, Yeong Og Choi, Sang Young Yeo *Technical Textile & Materials R&D Group, KITECH, Korea.* #### P3-28 # FABRICATION AND EVALUATION OF SINGLE-WALLED CARBON NANOTUBE/EPOXY PREPREGS AND THEIR COMPOSITES Min-Ye Koo^{1,2}, Sang-Won Lee¹, Hon-Chung Shin¹, Gyowoo Lee² and Won-Seok Kim¹ ¹Korea Institute of Carbon Convergence Technology, Jeonju, 561-844, Korea ### P3-29 # MECHANICAL AND ELECTRICAL PROPERTIES OF EPOXY COMPOSITES CONTAINING TREATED CARBON NANOTUBES BY OXYFLUORINATION Young-Seak Lee, Kyeong Min Lee, Si-Eun Lee Department of Chemical Engineering and Applied Chemistry, Chungnam National University, Daejeon, 34134, Korea. #### P3-30 # EFFECT OF FLUORINATION ON MECHANICAL PROPERTIES OF CARBON NANOTUBES AND GRAPHENE NANOPLATELETS REINFORCED EPOXY COMPOSITES Young-Seak Lee, Kyeong Min Lee, and Si-Eun Lee Department of Chemical Engineering and Applied Chemistry, Chungnam National University, Daejeon, 34134, Korea. ### P3-31 # CARBON NANOFIBER PREPARED FROM FLUORINATED ELECTROSPUN CELLULOSE ACETATE Young-Seak Lee¹, Sangmin Lee¹, Min Il Kim¹, Seung-Kon Ryu², and Yunhua Yu³ ¹Department of Chemical Engineering and Applied Chemistry, Chungnam National University, Daejeon, 34134, Korea ²Korea Institute of Carbon Convergence Technology, Banryonong-ro, Jeonju, 561-844, Korea ³College of Materials Science and Engineering Beijing University of Chemical Technology, Chaoyang District, Beijing 100029 China. #### P3-32 #### CARBON BLACK ADDED CARBON FOAMS WITH HIGH COMPRESSIVE STRENGTH Young-Seak Lee, Sangmin Lee and Ji-Hyun Kim Department of Chemical Engineering and Applied Chemistry, Chungnam National University, Daejeon, 34134, Korea. #### P3-33 #### THE CHARACTERISTICS OF MESOPHASE PITCH-BASED GRAPHITE FOAMS FABRICATED ²Division of mechanical design engineering, Chonbuk National University, Jeonju, 561-756, Korea. ### **USING PVA-AAC AS A TEMPLATE** Young-Seak Lee¹, Ji-Hyun Kim¹, Sangmin Lee¹, and Euigyung Jeong² ¹Department of Chemical Engineering and Applied Chemistry, Chungnam National University, Daejeon, 34134. Korea ²The 4th R&D Institute-4, Agency for Defense Development, Daejeon, 34188, Korea. #### P3-34 # MANUFACTURE OF PURE CARBON NANOTUBE NANOFIBERS USING ELECTROSPINNING AND THEIR ELECTRICAL CONDUCTIVITY Jinyong Lee, Ho-sung Yang, Woong-Ryeol Yu Department of Materials Science and Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 151-742, Republic of Korea. #### P3-35 # EFFECT OF MWCNT-GRAPHITE COMPOSITES ON ELECTROMAGNETIC FIELD SHIELDING AT EXTREMELY LOW FREQUENCY (ELF) Seong-Moon Oh, Dong-Su Kang, Sang-Min Lee, Won-Pyo Jang and Jae-Seung Roh School of Materials Science and Engineering, Kumoh National Institute of Technology, Korea. #### P3-36 ### EFFECT OF PAN-BASED CARBON FIBER LENGTH AFTER OXIDATION ON CRYSTALLITE SIZE CHANGES Seong-Moon Oh, Dong-Su Kang, Sang-Min Lee, Sang-Hye Lee, and Jae-Seung Roh School of Materials Science and Engineering, Kumoh National Institute of Technology, Korea. #### P3-37 # EFFECTS OF TEMPERATURE IN THE MIDDLE AND THE LAST ZONES OF OXIDATIVE STABILIZATION ON THE MECHANICAL PROPERTIES OF CARBON FIBERS Jie Liu, Wen-jie Li, Jie-ying Liang, Yan Xue, and Xiao-xu Wang Key Laboratory of Carbon Fiber and Functional Polymers, College of Materials Science and Engineering, Beijing University of Chemical Technology, Chao-Yang District, Beijing 100029, China. #### P3-38 ### HIGH FLUX GRAPHENE OXIDE MEMBRANE: THE ROLE OF SURFACTANT Boyue Lian¹, Yuta Nishina^{2,3}, Greg Leslie¹, Rakesh K. Joshi⁴ ¹UNESCO Centre for Membrane Science and Technology, University of New South Wales, Australia ²Research Core for Interdisciplinary Sciences, Okayama University, Okayama, Japan ³Precursory Research for Embryonic Science and Technology, Japan Science and Technology Agency, 4-1-8 Honcho, Kawaguchi, Japan ⁴Centre for Sustainable Materials Research and Technology, School of Materials Science and Engineering, University of New South Wales, Australia. #### P3-39 # INFLUENCE OF "SIZE EFFECT" ON THE OXIDATIVE STABILIZATION PROCESS AND THE TENSILE STRENGTH OF PAN-BASED CARBON FIBERS Jie Liu, Liang Wang, Jie-ying Liang, Yan Xue, and Xiao-xu Wang Key Laboratory of Carbon Fiber and Functional Polymers, College of Materials Science and Engineering, Beijing University of Chemical Technology, Chao-Yang District, Beijing 100029, China. #### P3-40 # ELUCIDATION OF CHEMICAL STRUCTURES OF ATACTIC-POLYACRYLONITRILE STABILIZED AS A FUNCTION OF STABILIZATION TIME BY SOLID-STATE NMR Xiaoran Liu, Toshikazu Miyoshi Department of Polymer Science, The University of Akron, Akron, OH 44325-3909, USA. # NITROGEN-DOPED CARBON THREE-DIMENSIONAL STRUCTURES: SYNTHESIS, CHARACTERIZATION AND MAGNETIC PROPERTIES Emilio Muñoz-Sandoval, Alejandro Cortes-López, Beatriz Flores-Gómez, Juan Antonio Esparza-Barraza, Roque Sánchez-Salas, Florentino López-Urías Advanced Materials Department, IPICYT, Camino a la Presa San José 2055, Lomas 4a Sección, San Luis Potosí, S.L.P., 78216, México. ### P3-42 # OXYGEN DIFFUSION AND RADIAL-STRUCTURE TRANSFORMATION OF ELECTROSPUN POLYACRYLONITRILE COPOLYMER NANOFIBERS DURING OXIDATIVE STABILIZATION PROCESS Sai Ma, Jie Liu, Jie-Ying Liang, Yan Xue, and Xiao-Xu Wang State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Chao-Yang District, No. 15 Bei-San-Huan East Road, Beijing 100029, China. ### P3-43 # PLASMA-BASED CARBONIZATION OF PAN FIBRES WITH SCALABLE LINEAR MICROWAVE PLASMA SOURCE Jane Großmann, Julius Roch, Gerrit Mäder and Stefan Kaskel Fraunhofer-Institute for Material and Beam Technology, Dresden, Germany. #### P3-44 ### RECYCLING OF CARBON FIBRE COMPOSITES Sonia Melendi-Espina^{1,2}, Christopher Morris², Thomas Turner², and Stephen Pickering² ¹University of East Anglia, UEA, School of Mathematics, Faculty of Science, Science Building, Norwich Research Park, Norwich NR4 7TJ, United Kingdom ²University of Nottingham, Polymer Composites Group, Division of Materials, Mechanics & Structures, Faculty of Engineering, Nottingham, NG7 2RD, United Kingdom. #### P3-45 # EFFECT OF CARBON NANOTUBES ON THE ELECTRIC HEATING PERFORMANCE OF PERFLUOROALKOXY COMPOSITE FILMS Xing Meng¹, Jian-Ping Cao¹, Meiyan Huang¹, Yangsi Liu^{1,2} and Ling Sun¹ ¹Material and Industrial Technology Research Institute Beijing, Boda Building North, No. 28 Life Science Park Road, Changping District, Beijing, 102206, China ²Beijing Guyue New Materials Research Institute, Beijing University of Technology, 100 Ping Le Yuan, Chaoyang District, Beijing 100124, China. ### P3-46 # SYNTHESIS OF A GRAPHENE/MOF COMPOSITE MATERIAL FOR IMPROVED HYDROGEN STORAGE PROPERTIES Nicholas M. Musyoka¹, Jianwei Ren¹, Henrietta W. Langmi¹, Brian C. North¹, Mkhulu Mathe¹, Dmitri Bessarabov² ¹HySA Infrastructure Centre of Competence, Materials Science and Manufacturing, Council for Scientific and Industrial Research (CSIR), PO Box 395, Pretoria 0001, South Africa ²HySA Infrastructure Centre of Competence, Faculty of Engineering, North-West University(NWU), P. Bag X6001, Potchefstroom 2520, South Africa. ### P3-47 ### PREPARATION AND PERFORMANCE OF GRAPHENE/POLYIMIDE COMPOSITE CARBON FIBER Li Na, Ma Zhao-kun, Song Huai-he, Li Ang, Zhang Ya-bing, Jia Yue-rong State Key Laboratory of Chemical Resource Engineering, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China. # CHOPPED CARBON FIBER-REINFORCED PARTIALLY RENEWABLE THERMOPLASTIC COMPOSITES FOR AUTOMOTIVE APPLICATIONS Kokouvi Akato, 1,2 Duncan A. Greeley, 1 Amit K. Naskar 1,2 ¹Carbon and Composite Group, Materials Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831 USA. ²The Bredesen Center for Interdisciplinary Research and Graduate Education, The University of Tennessee, Knoxville, TN, 37996, USA. #### P3-49 # INFLUENCE OF AIR FLOW CONDITIONS ON THE EVOLUTION OF RADIAL HETEROGENEITY IN THERMAL STABILIZATION OF PAN PRECURSOR FIBRES Srinivas Nunna¹, Claudia Creighton¹, Nishar Hameed¹, Minoo Naebe¹, Mohan Setty¹, Stephen Atkiss¹, Bronwyn Fox² ¹Carbon Nexus, Institute for Frontier Materials, Deakin University, Geelong, Australia ### P3-50 # EXPERIMENTAL OBSERVATION ON FLOW-INDUCED "TUMBLING" STRUCTURE OF MOLTEN MESOPHASE PITCH Zhao Jiang¹, Ting Ouyang¹, Lei Chen¹, Xiaohua Fan¹ and Youqing Fei^{1,2} ¹College of Materials Science and Engineering, Hunan University, Changsha 410082, China #### P3-51 # NOVEL 3-DIMENSIONAL NANOCOMPOSITE OF COVALENTLY INTERCONNECTED MULTIWALLED CARBON NANOTUBES (MWCNTs) USING SILICON AS AN ATOMIC WELDER Lakshmy Pulickal Rajukumar¹, Manuel Belmonte², John Edward Slimak³, Ana Laura Elías⁴, Eduardo Cruz-Silva⁴, Nestor Perea-López⁴, Aaron Morelos Gómez⁵, Humberto Terrones⁶, Pilar Miranzo², Morinobu Endo⁵, Mauricio Terrones^{1,4,5} ²Factory of the Future, Swinburne University of Technology, Hawthorn, Australia. ²State Key Laboratory of Advanced Design and Manufacturing for Vehicle Body, Hunan University, Changsha 410082, China. ¹Department of Materials Science and Engineering, The Pennsylvania State University, USA; ²Instituto de Cerámica y Vidrio, CSIC, Spain; ³Department of Chemical Engineering, The Pennsylvania State University, USA; ⁴Department of Physics and Center for 2-Dimensional and Layered Materials, The Pennsylvania State University, USA; ⁵Research Center for Exotic Nanocarbons, Shinshu University, Japan; ⁶Department of Physics, Applied Physics & Astronomy, Rensselaer Polytechnic Institute, USA. ### S8: Graphene – 1 #### P3-52 # ELECTRICAL AND MECHANICAL PROPERTIES OF POLYMER-GRAPHENE COMPOSITES AS RELATED TO DENSITY Elizabeth E. V. Brown¹, Steven J. Woltornist², and Douglas H. Adamson^{1,2} ¹Polymer Program, Institute of Materials Science, University of Connecticut, Storrs, Connecticut 06269, United States ²Department of Chemistry, University of Connecticut, Storrs, Connecticut, 06269, United States3Department of Polymer Science, The University of Akron, Akron, Ohio 44325, United States. ### P3-53 # PERSPECTIVE APPLICATION OF GRAPHENE STRUCTURES OBTAINED USING AROMATIC HYDROCARBONS Baitimbetova B.A.¹, Ryabikin Yu.A.², Sultanov F.³, Nikulin V.E.⁴, N.G. Prikhodko³, Mansurov S.A.³ ¹K.I.Satpaev Kazakh National Research Technical University, Almaty, Republic of Kazakhstan ### P3-54 # EFFECT OF SURFACE CHEMISTRY OF GRAPHENE OXIDE ON ITS COMPATIBILITY WITH ORGANIC MATRIX Barbara Berke^{1,2}, László Sós¹, Richárd Czippán¹, Orsolya Czakkel² and Krisztina László¹ ¹Department of Physical Chemistry and Materials Science, Budapest University of Technology and Economics, 1521 Budapest, Hungary ²Institut Laue-Langevin, CS 20156, F - 38042 Grenoble Cedex 9, France. #### P3-55 (now O12-3 in S8) #### P3-56 ### ELECTRON FIELD EMISSION FROM GRAPHENE/NANOCRYSTALLINE DIAMOND HYBRIDS Uladzislau Zubets¹, Nuno Santos¹, Alexandre Carvalho¹, António Fernandes¹, Luiz Pereira¹, Tiago Holz¹, Rui Silva², Florinda Costa¹ ¹I3N, Physics Depart., University of Aveiro, Campus de Santiago, Aveiro, Portugal; ²CICECO, Mat. Cer. Eng. Dept., University of Aveiro, Campus de Santiago, Aveiro, Portugal. ### P3-57 (now O15-4 in S8) ### P3-58 # GRAPHENE OXIDE/GRAPHENE STACKING TRANSPARENT CONDUCTIVE ELECTRODES FOR HIGHLY EFFICIENT ORGANIC LIGHT EMITTING DIODES Jinhong Du¹, Shuai Jia¹, Hengda Sun², Zhikun Zhang¹, Dingdong Zhang¹, Jiangshan Chen², Dongge Ma², Hui-Ming Cheng¹, Wencai Ren¹ ¹Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, 72 Wenhua Road, Shenyang 110016, P. R. China ²State Key Laboratory of Polymers Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun 130022, P. R. China #### P3-59 ### POROUS Co-Al LDH-GRAPHENE FOR ULTRA HIGH RATE SUPERCAPACITORS Xiaoliang Wu, Tong Wei College of Material Science and Chemical Engineering, Harbin Engineering University, Harbin 150001, China. ²Physical and Technical Institute, Almaty, Republic of Kazakhstan ³Institute of Combustion Problems, Almaty, Republic of Kazakhstan ⁴Al-Farabi Kazakh National University, Kazakhstan. # SYNTHESIS AND CHARACTERIZATION OF CVD-GROWN MULTILAYER GRAPHENE NANORIBBONS Kazunori Fujisawa¹, Yu Lei², Cheon-Soo Kang³, Ana Laura Elìas^{1,4}, Hiroyuki Muramatsu³, Takuya Hayashi³, and Mauricio Terrones^{1,2,4,5} 1 Department of Physics, The Pennsylvania State University, University Park, Pennsylvania 16802, USA ²Department of Materials Science and Engineering & Materials Research Institute, The Pennsylvania State University, University Park, Pennsylvania 16802, USA ³Faculty of Engineering, Shinshu University, 4-17-1 Wakasato, Nagano 380-8553, Japan ⁴Center for 2-Dimensional and Layered Materials, The Pennsylvania State University, University Park, Pennsylvania 16802, USA ⁵Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, USA. ### P3-61 ### MOLECULAR SELECTIVITY OF GRAPHENE-ENHANCED RAMAN SCATTERING Shengxi Huang¹, Xi Ling¹, Liangbo Liang², Jing Kong¹, Vincent Meunier², MildredDresselhaus¹ ¹Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA 02139, USA ²Department of Physics, Applied Physics, and Astronomy, Rensselaer Polytechnic Institute, Troy, New York 12180, USA. #### P3-62 # GRAPHENE OXIDE AS AN EFFECTIVE FILLER IN ANION EXCHANGE ALKALINE POLYMER MEMBRANES Leticia García-Cruz¹, Clara Casado-Coterillo², Vicente Montiel¹, Ángel Irabien² and JesusIniesta¹ ¹Departamento de Química Física e Instituto de Electroquímica, Universidad de Alicante, 03080 Alicante, Spain. ²Depamento. de Ingenierías Química y Biomolecular, Universidad de Cantabria, 39005 Santander, Cantabria, Spain. ### P3-63 # A MULTI-LAYER GRAPHENE ATOMIC GATE FOR HIGHLY FOCUSED ELECTRON SOURCES FROM CARBON NANOTUBE FIELD EMITTERS Hyojin Jeon^{1,2}, Min-Sik Shin^{1,2}, Jun-Tae Kang¹, Sora Park¹, Young-Chul Choi¹, Jae-Woo Kim¹, Eunsol Go^{1,2}, Jin-Woo Jeong¹, Ji-Hwan Yeon¹, Sunghee Kim¹ and Yoon-Ho Song^{1,2} ¹Nano-Electron Source Research Section, Electronics and Telecommunications Research Institute, 218 Gajeong-ro, Yuseong-gu, Daejeon, 34129, Republic of Korea ²Department of Advanced Device Technology, University of Science and Technology, 217 Gajeong-ro, Yuseong-gu, Daejeon 34113, Republic of Korea. #### P3-64 # THREE-DIMENSIONAL Fe₃O₄/GRAPHENE AEROGEL AS ANODE FOR LITHIUM ION BATTERIES Yu Wang, Mengqiu Jia and Yuhao Duan Beijing Key Laboratory of Electrochemical Process and Technology for Materials, Beijing University of Chemical Technology, Beijing 100029, China. #### P3-65 # NITROGEN-DOPED GRAPHENE STUDIED BY SCANNING TUNNELING MICROSCOPY/SPECTROSCOPY AND ANGLE-RESOLVED PHOTOEMISSION SPECTROSCOPY Frédéric Joucken¹, Yann Tison², Patrick Le Fèvre³, Antonio Tejeda³, Amina Tale-Ibrahimi³, Edward Conrad⁴, Vincent Repain², Cyril Chacon², Amandine Bellec², Yann Girard², Sylvie Rousset², Jacques Ghijsen¹, Robert Sporken¹, Hakim Amara⁵, François Ducastelle⁵ and Jérôme Lagoute² ¹University of Namur, Namur, Belgium ²Université Paris Diderot – Paris 7, Paris, France ³Soleil synchrotron, Gif-sur-Yvette, France ⁴GeorgiaTech, Atlanta, USA ⁵ONERA – CNRS, Saclay, France. #### P3-66 (cancelled) #### P3-67 ## HEATING-ASSOCIATED STRUCTURAL CHANGE OF GRAPHENE NANORIBBONS OBTAINED BY UNZIPPING DOUBLE-WALLED CARBON NANOTUBES Dukeun Kim^{1,2}, Hiroyuki Muramatsu³, and Yoong Am Kim^{1,2} ¹Alan G. MacDiarmid Energy Research Institute & School of Polymer Science and Engineering, Chonnam National University, Gwangju 500-757, Republic of Korea ²Department of Polymer Engineering, Graduate School, Chonnam National University, 77 Yongbong-ro, Gwangju 500-757, Republic of Korea ³Faculty of Engineering, Shinshu University, Wakasato, 4-17-1, Nagano 380-8553, Japan. #### P3-68 #### FLUORINATION OF GRAPHENE OXIDE FOR DETECTING NH3 GAS Kyung Hoon Kim, Mi-Seon Park, Min-Ji Kim, and Young-Seak Lee Department of Chemical Engineering and Applied Chemistry, Chungnam National University, Daejeon 34134, Korea. ### P3-69 # FRACTIONATION OF GRAPHENE OXIDE ON THE BASIS OF OXIDATION, SHEET SIZE, AND SHEET STACKING Harish V. Kumar¹, Douglas H Adamson^{1,2} ¹Institute of Materials Science, Polymer Program, University of Connecticut, Storrs, Connecticut 06269 ²Department of Chemistry, University of Connecticut, Storrs, Connecticut 06269, USA. #### P3-70 # MULTILAYER GRAPHENE-BASED TRANSPARENT ELECTRODES FOR ENHANCED LIGHT EXTRACTION IN III-NITRIDE LIGHT-EMITTING DIODES Tae Kyoung Kim, Joon Seop Kwak Department of Printed Electronics Engineering, Sunchon National University, Jeonnam 540-742, Korea. ### P3-71 ### TOWARDS AN EFFICIENT SYNTHESIS OF Ni/HETEROATOM (N, S or B)-DOPED GRAPHENE NANOMATERIALS G. Lemes¹, J.M. Luque-Centeno^{1,2}, A.M. Borrero¹, S. Pérez-Rodríguez¹, C. Montero³, L.M. Rivera³, M.V. Martínez-Huerta², E. Pastor³, R. Moliner¹, M.J. Lázaro¹ ¹Instituto de Carboquímica (CSIC), Miguel Luesma Castán 4, 50018 Zaragoza, Spain. ²Instituto de Catálisis y Petroleoquímica (CSIC), Marie Curie 2, 28049 Madrid, Spain. ³Universidad de La Laguna, Instituto de Materiales y Nanotecnología, Dpto. Química-UD Química-Física, Avda. Astrofísico Francisco Sánchez s/n, 38071 La Laguna (Tenerife), Spain. ### P3-72 # COMPARISON OF HEAVY METAL ADSORPTION PROPERTIES USING MAGNETITE-GRAPHENE OXIDE AND MAGNETITE-REDUCED GRAPHENE OXIDE Sungkyun Lee^{1,3}, Yeojoon Yoon¹, ChanWoong Park^{1,2}, ChangUk Seo^{1,3}, Dae Ho Yoon³, and Woo Seok Yang¹ *Electronic Materials and Device Research Center, Korea Electronics Technology Institute Seongnam 463-816, South Korea* ²Nanotechnology & Advanced Materials Engineering, Sejong University, Seoul, 143-747, South Korea ³School of Advanced Materials Science and Engineering, Sungkyunkwan University, Suwon440-746, South Korea. #### SYNTHESIS OF CARBON NANOMATERIALS IN ALTERNATIVE FLAME Bakhytzhan T. Lesbayev^{1,2}, Nikolay G. Prikhodko^{1,3}, Nurgali B. Rakhimzhan¹, MeruyertNazhipkyzy^{1,2}, Aidana Nurgozhayeva¹, Zubayrov Nursultan¹ and Zulkhair A. Mansurov^{1,2} ¹Institute of Combustion Problems, 172, BogenbaiBatyr St., Almaty, Kazakhstan ²Al-Farabi Kazakh National University, Almaty050040, Kazakhstan ³Almaty University of Energetics and Communications, 126, Baytursinova St., Almaty, Kazakhstan. #### P3-74 ### ENHANCING VOLUMETRIC PERFORMANCE OF ENERGY STORAGE DEVICES BY GRAPHENE Huan Li^{1,2}, Ying Tao^{1,2}, Xiaoyu Zheng^{1,2}, Jiayan Luo^{1,2}, Feiyu Kang³ and Quan-Hong Yang^{1,2,3} ¹Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China ²Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, China ³Shenzhen Key Laboratory for Graphene-based Materials and Engineering Laboratory for Functionalized Carbon Materials, Graduate School at Shenzhen, Tsinghua University, Shenzhen 518055, China. #### P3-75 # MOLECULAR WELDED GRAPHENE FILM WITH HIGH THERMAL CONDUCTIVITY AND FLEXIBILITY Haoliang Li, Sichang Dai, Hanxun Qiu, Jing Li and Junhe Yang School of Material Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China. #### P3-76 (now O9-3 in S8) ### P3-77 (now O13-1 in S8) #### P3-78 # INFLUENCE OF THE ELECTROPHORETIC DEPOSITION PARAMETERS ON THE FORMATION OF GRAPHENE-BASED FILMS Zoraida González, Ana M. Pérez Mas, Clara Blanco, Ricardo Santamaría, Marcos Granda, Patricia Álvarez, Rosa Menéndez Instituto Nacional del Carbón, INCAR-CSIC, P.O. Box. 73, 33080- Oviedo (Asturias), Spain. #### P3-79 # CONTROLLING THE STRUCTURE AND PROPERTIES OF CARBON NANOTUBES/GRAPHENE OXIDE BUCKYPAPERS Ana M. Pérez-Mas^{1,2}, Karwei So², Seyyed Shayan Meysami², Ricardo Santamaría¹, Patricia Álvarez¹, Rosa Menéndez¹, and Nicole Grobert² ¹Instituto Nacional del Carbón, INCAR-CSIC, P.O. Box 73, 33080 Oviedo, Spain ²Department of Materials, University of Oxford, Parks Road, Oxford OX1 3PH, UK. ### ADSORPTION OF CARBOFURAN AND CYMOXANIL OVER WASTE TIRE ACTIVATED CARBONS Lorena González, Yhordan Rueda, Adriana Zamudio, Laura Conde *Universidad Jorge Tadeo Lozano, Carrera 4 # 22-60, Bogotá, Colombia.* #### P3-81 # ACTIVATED CARBON MONOLITHS FROM LIGNOCELLULOSICS-DEREVED MATERIAL: LIQUID AND GAS PHASE ADSORPTION Paul O. Ibeh, Francisco J. García-Mateos, Juana M. Rosas, José Rodríguez-Mirasol, Tomás Cordero Departamento de Ingeniería Química, Universidad de Málaga, Andalucía Tech., Facultad deCiencias, Campus de Teatinos s/n, 29010 Málaga, Spain. #### P3-82 #### SELECTIVE NITROGEN FUNCTIONALIZATION OF P-CONTAINING CARBONS Juan J. Ternero-Hidalgo, José Palomo, Juana M. Rosas, José Rodríguez-Mirasol, Tomás Cordero Universidad de Málaga, Andalucía Tech, Departamento de Ingeniería Química, Málaga, Spain. #### P3-83 # ASSESSMENT OF HIGH ELECTRIC FIELD MICROWAVE SYSTEM IN THE PREPARATION OF CARBON ADSORBENTS Gabriela Durán-Jiménez¹, Virginia Hernández-Montoya¹, Samuel Kingman², Eleanor Binner², Tamara Monti² ¹Departamento de Ingeniería Química y Bioquímica, Instituto Tecnológico de Aguascalientes, 20256 Aguascalientes, México ²Microwave Process Engineering Research Group, Energy and Sustainability Research Division, Faculty of Engineering, University of Nottingham, University Park, Nottingham, NG72RD, United Kingdom. #### P3-84 ### A HIERARCHICAL POROUS CARBON (HPC) SPECIFICALLY STRUCTURED FOR A COMBINATION OF HIGH SURFACE AREA AND PORE VOLUME Luis Estevez¹, Sookyung Jeong¹, Wu Xu¹, Ruiguo Cao¹, Xiaolin Li¹, *Priyanka Bhattacharya*¹, *Qiang Wu*², *Jim P. Zheng*², *Ji-Guang Zhang*¹ ¹Pacific Northwest National Laboratory, Richland, WA, USA #### P3-85 #### EXPERIMENTAL SETUP AND MEASUREMENT OF GAS DIFFUSION IN POROUS CARBONS Marcus Franz¹, Jonas Schmitz² and Bojan Jokanovic³ ¹SGL Group, Werner-von-Siemens-Str. 18, 86405 Meitingen, Germany ²University Augsburg, Universitätsstr. 2, 86159 Augsburg, Germany ³SGL Group, Werner-von-Siemens-Str. 18, 86405 Meitingen, Germany. ### P3-86 ### BIOMASS-DERIVED ADSORBENTS AS SUPPORT FOR THE CONTROLLED RELEASE OF UREA Margarida Galhetas^{1,2}, Sandra Ventura¹, Ana S. Mestre¹, Marco Gaya², and Ana P. Carvalho¹ ¹Centro de Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa, 1749-016 Lisboa, Portugal ²Universidade do Estado do Rio de Janeiro, Departamento de Operações e Projetos Industriais, Rua São Francisco Xavier 524, 20550-900, Maracanã, Rio de Janeiro, Brasil. ### P3-87 # PERFORMANCE AND CYCLEABILITY OF CHEMICALLY MODIFIED CARBONS FOR CO₂ REMOVAL IN INDOOR AIR ENVIRONMENTS IN MOISTURE CONDITIONS Raquel García-González, Teresa Valdés-Solís, José B. Parra, Conchi O. Ania ²Florida State University, Tallahassee, FL, USA. ADPOR Group, Instituto Nacional del Carbón (INCAR, CSIC), Oviedo 33011, Spain. #### P3-88 # SYNTHESIS OF ACTIVATED CARBON FROM PYROLYSIS OF *BABASSU* COCONUT: IMPROVING THE SURFACE AREA WITH CHEMICAL ACTIVATION Anupama Ghosh¹, Ariane Maria da Silva Santos¹, R. S. Costa1, Odair P. Ferreira², Humberto Terrones³, Bartolomeu Cruz Viana¹ #### P3-89 ### GRANULAR ACTIVATED CARBON ANCHORED WITH POLYIONIC LIQUIDS FOR SULFATE REMOVAL Pin Hou^{1,2}, Ruonan Wang¹, Zhe Yan¹, Fred S. Cannon² ¹School of Chemical and Environmental Engineering, China University of Mining and Technology, Beijing 100083, China #### P3-90 # POROUS STRUCTURED LIGNIN/POLYACRYLONITRILE CARBON FIBER ELECTRODES FOR SUPERCAPACITORS Jing Jin, Kryssia Diaz, Mark Roberts, and Amod Ogale Department of Chemical and Biomolecular Engineering, Clemson University, Clemson, SC 29634, USA. ### P3-91 # EFFECT OF FLUORINATION ON THE TOLUENE GAS ADSORPTION PROPERTIES OF ACTIVATED CARBON Min-Jung Jung¹, Min-Ji Kim¹, Seung-Kon Ryu², and Young-Seak Lee^{1*} ¹Department of Chemical Engineering and Applied Chemistry, Chungnam National University, Daejeon, 34134. Korea #### P3-92 ### WHEN FOOD WASTE IS NOT WASTED: NANOCARBON APPLICATIONS Katerina Kampioti^{1,2}, Carolina Ferreira de Matos³, Kai Huang^{1,2}, Catharina Paukner⁴, Christèle Jaillet-Bartholome^{1,2}, Alain Derré^{1,2}, Aldo José Gorgatti Zarbin³, Alain Pénicaud^{1,2} ### P3-93 # DESULFURIZATION ORIENTED SURFACE MOLECULARLY IMPRINTED POLYMERS BASED ON ORDERED MESOPOROUS CARBON NANOSPHERES Lei Qin^{1,2}, Xaiofeng Zhao^{1,2}, Yongzhen Yang^{1,3}, and Xuguang Liu^{1,2} ¹Key Laboratory of Interface Science and Engineering in Advanced Materials, Ministry of Education, Taiyuan University of Technology, Taiyuan 030024, China ²College of Chemistry and Chemical Engineering, Taiyuan University of Technology, Taiyuan 030024, China ³Research Center of Advanced Materials Science and Technology, Taiyuan University of Technology, Taiyuan 030024, China. #### P3-94 ### MECHANICALLY IMPROVED CARBON FOAM DERIVED FROM MELAMINE FOAM AND ITS ¹Universidade Federal do Piauí, Teresina - PI, Brasil ²Universidade Federal do Ceará, Fortaleza - CE, Brasil ³Rensselaer Polytechnic Institute, Troy, NY, USA. ²Department of Civil and Environmental Engineering, The Pennsylvania State University, University Park, PA 16802. United States. ²Korea Institute of Carbon Convergence Technology, Banryonong-ro, Jeonju, 561-844, Korea. ¹Centre de Recherche Paul Pascal-CNRS, Bordeaux, France ²University of Bordeaux, France ³Federal University of Parana, Brazi ⁴FGV Cambridge Nanosystems, Cambridge, United Kingdom. ### APPLICATIONS AS FLEXIBLE ELECTRODE Ming Liu¹, Liying Zhang¹, Yujie Song², Yushan Tay² and Xiao Hu² ¹Temaasek Laboratories @NTU, Nanyang Technological University, 50 Nanyang Drive, Singapore ²School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore. ### P3-95 ### NEW INSIGHTS ON THE IMMOBILIZATION MECHANISM OF *ESCHERICHIA COLI* ONTO ACTIVATED CARBONS Susana Marques^{1,2}, Marta Pacheco², Jossano Marcuzzo³, Ana S. Mestre¹, Ricardo Dias², and Ana P. Carvalho¹ ¹Centro de Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa, 1749-016 Lisboa, Portugal ²Instituto de Biossistemas & Ciências Integrativas, Faculdade de Ciências, Universidade de Lisboa, 1749-016 Lisboa, Portugal ³Faculdade de Tecnologia do Estado de São Paulo FATEC - Campus São José dos Campos, 12247-014 – São José dos Campos, SP Brasil. ### P3-96 # POROSITY AND MORPHOLOGY TRANSFORMATIONS OF PITTSBURGH No. 8 COAL CHAR IN CO₂ GASIFICATION UNDER PORE DIFFUSION LIMITATION Bowarnrat Thanasattayaviboon and Jonathan P. Mathews* The Leone Department of Energy and Mineral Engineering, and The EMS Energy Institute, The Pennsylvania State University, United States. ### P3-97 ### TAILORED DESIGN OF 3D HIERARCHICALLY POROUS CARBON FROM METAL-OXOCARBON ANION COORDINATION COMPLEXES Christian Mbaya Mani, Thomas Berthold, Markus Antonietti, Nina Fechler Max Planck Institute of Colloids and Interfaces, Department of Colloid Chemistry, Am Mühlenberg 1, 14476 Potsdam, Germany. (updated 07/07/2016)